ABSTRACT

Antibiotic resistance has become a major public health concern as bacteria evolve to evade drugs, leading to recurring infections and a decrease in antibiotic efficacy. Systematic efforts have revealed mechanisms involved in resistance. Yet, in many cases, how these specific mechanisms accelerate or slow the evolution of resistance remains unclear. Here, we conducted a systematic study of the impact of the AcrAB-TolC efflux pump on the evolution of antibiotic resistance. We mapped how population growth rate and resistance change over time as a function of both the antibiotic concentration and the parent strain’s genetic background. We compared the wild-type strain to a strain overexpressing AcrAB-TolC pumps and a strain lacking functional pumps. In all cases, resistance emerged when cultures were treated with chloramphenicol concentrations near the MIC of their respective parent strain. The genetic background of the parent strain also influenced resistance acquisition. The wild-type strain evolved resistance within 24 h through mutations in the acrAB operon and its associated regulators. Meanwhile, the strain overexpressing AcrAB-TolC evolved resistance more slowly than the wild-type strain; this strain achieved resistance in part through point mutations in acrB and the acrAB promoter. Surprisingly, the strain without functional AcrAB-TolC efflux pumps still gained resistance, which it achieved through upregulation of redundant efflux pumps. Overall, our results suggest that treatment conditions just above the MIC pose the largest risk for the evolution of resistance and that AcrAB-TolC efflux pumps impact the pathway by which chloramphenicol resistance is achieved.

Credit: CDC

IMPORTANCE

Read more a mSphere…