Antimicrobial resistance poses an increasing risk to human and animal health worldwide. In particular, carbapenem resistance mediated by serine β-lactamases and metallo-β-lactamases (MBLs), such as the OXA enzymes produced by  and  carbapenemase (KPC-1) and New Delhi metallo-β-lactamase (NDM-1) produced by Enterobacteriaceae, is associated with a high mortality rate among hospitalised patients [1,2]. NDM-1, a type of Ambler class B metallo-β-lactamases (MBLs), exhibits high hydrolytic activity against almost all known β-lactam antimicrobials (except aztreonam), including the last-line carbapenems [3,4]. It was first found to be produced by  and  strains isolated from a Swedish patient of Indian origin who was admitted to hospital in New Delhi, India [5]. Thereafter, the   gene disseminated in various countries and regions such as China, the Middle East, South East Asia and Europe [4]. This multidrug resistance gene, which may be located on either plasmids or chromosome [3,6,7], leaves few therapeutic options for infected patients. In China, Ho et al. reported the first isolation of  -positive  from a 1-year-old infant and its mother in 2011 [8]. NDM-1-producing Enterobacteriaceae have since disseminated to various provinces in China, with the majority of such strains isolated from stool samples [9]. However, reports of isolation of carbapenem-resistant Enterobacteriaceae (CRE) from food samples remain scarce around the world.

Credit: CDC

Read more…

 

Citation style for this article: Liu XiaoboGeng ShuChan Edward Wai-ChiChen Sheng. Increased prevalence of Escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017. Euro Surveill. 2019;24(13):pii=1800113. https://doi.org/10.2807/1560-7917.ES.2019.24.13.1800113