ABSTRACT

The BvgS/BvgA two-component system controls expression of ∼550 genes of Bordetella pertussis, of which, ∼245 virulence-related genes are positively regulated by the BvgS-phosphorylated transcriptional regulator protein BvgA (BvgA∼P). We found that a single G-to-T nucleotide transversion in the 5′-untranslated region (5′-UTR) of the rplN gene enhanced transcription of the ribosomal protein operon and of the rpoA gene and provoked global dysregulation of B. pertussis genome expression. This comprised overproduction of the alpha subunit (RpoA) of the DNA-dependent RNA polymerase, downregulated BvgA and BvgS protein production, and impaired production and secretion of virulence factors by the mutant. Nonetheless, the mutant survived like the parental bacteria for >2 weeks inside infected primary human macrophages and persisted within infected mouse lungs for a longer period than wild-type B. pertussis. These observations suggest that downregulation of virulence factor production by bacteria internalized into host cells may enable persistence of the whooping cough agent in the airways.

IMPORTANCE

Image credit: CDC

Read more…